Large-scale vortices and zonal flows in spherical rotating convection
نویسندگان
چکیده
Abstract
منابع مشابه
Scaling regimes in spherical shell rotating convection
Rayleigh-Bénard convection in rotating spherical shells can be considered as a simplified analogue of many astrophysical and geophysical fluid flows. Here, we use threedimensional direct numerical simulations to study this physical process. We construct a dataset of more than 200 numerical models that cover a broad parameter range with Ekman numbers spanning 3 × 10−7 ≤ E ≤ 10−1, Rayleigh number...
متن کاملConvection in Rotating Spherical Fluid Shells
Convection driven by thermal buoyancy in rotating spherical bodies of fluid has long been recognized as a fundamental process in the understanding of the properties of planets and stars. Since these objects are rotating in general and since their evolution is associated with the transport of heat from their interiors convection influenced by the Coriolis force does indeed play a dominant role i...
متن کاملMultistability in rotating spherical shell convection.
The multiplicity of stable convection patterns in a rotating spherical fluid shell heated from the inner boundary and driven by a central gravity field is presented. These solution branches that arise as rotating waves (RWs) are traced for varying Rayleigh number while their symmetry, stability, and bifurcations are studied. At increased Rayleigh numbers all the RWs undergo transitions to modul...
متن کاملBifurcations of rotating waves in rotating spherical shell convection.
The dynamics and bifurcations of convective waves in rotating and buoyancy-driven spherical Rayleigh-Bénard convection are investigated numerically. The solution branches that arise as rotating waves (RWs) are traced by means of path-following methods, by varying the Rayleigh number as a control parameter for different rotation rates. The dependence of the azimuthal drift frequency of the RWs o...
متن کاملLarge-scale behavior and statistical equilibria in rotating flows.
We examine long-time properties of the ideal dynamics of three-dimensional flows, in the presence or not of an imposed solid-body rotation and with or without helicity (velocity-vorticity correlation). In all cases, the results agree with the isotropic predictions stemming from statistical mechanics. No accumulation of excitation occurs in the large scales, although, in the dissipative rotating...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Fluid Mechanics
سال: 2021
ISSN: ['0022-1120', '1469-7645']
DOI: https://doi.org/10.1017/jfm.2020.1151